PUMA | NAME | Percent |
---|---|---|
00100 | Allegany & Garrett Counties–Cumberland City PUMA, Maryland | 1.69 |
00200 | Washington County–Hagerstown City PUMA, Maryland | 2.50 |
00301 | Frederick County (Outside Greater Frederick City) PUMA, Maryland | 2.13 |
00302 | Frederick County (Central)–Greater Frederick City PUMA, Maryland | 2.01 |
00400 | Carroll County PUMA, Maryland | 2.79 |
00501 | Baltimore County (Outer) PUMA, Maryland | 2.00 |
00502 | Baltimore County–Randallstown (East), Owings Mills, Milford Mill & Reisterstown PUMA; Maryland | 2.20 |
00503 | Baltimore County–Pikesville (South), Lochearn, Cockeysville & Mays Chapel PUMA; Maryland | 1.97 |
00504 | Baltimore County–Towson (East & Central), Parkville & Carney PUMA; Maryland | 1.98 |
00505 | Baltimore County–Perry Hall, Middle River & Rosedale PUMA; Maryland | 1.87 |
00506 | Baltimore County–Dundalk, Essex & Edgemere PUMA; Maryland | 1.88 |
00507 | Baltimore County–Catonsville, Woodlawn & Arbutus PUMA; Maryland | 1.89 |
00601 | Harford County (North & West)–Bel Air Town, Fallston & Jarrettsville PUMA; Maryland | 2.28 |
00602 | Harford County (South & East)–Aberdeen & Havre de Grace Cities PUMA, Maryland | 1.90 |
00700 | Cecil County PUMA, Maryland | 1.71 |
00801 | Baltimore City–Sandtown-Winchester, Ashburton & Mount Washington PUMA; Maryland | 2.26 |
00802 | Baltimore City–Guilford, Roland Park & Druid Lake PUMA; Maryland | 1.85 |
00803 | Baltimore City–Frankford, Belair-Edison & Loch Raven PUMA; Maryland | 2.03 |
00804 | Baltimore City–Inner Harbor, Canton & Bayview PUMA; Maryland | 2.16 |
00805 | Baltimore City–Irvington, Ten Hills & Cherry Hill PUMA; Maryland | 1.94 |
00901 | Howard County (West)–Columbia (West) & Ellicott City (Northwest) PUMA, Maryland | 2.27 |
00902 | Howard County (East)–Columbia (East), Ellicott City (Southeast) & Elkridge PUMA; Maryland | 2.98 |
01001 | Montgomery County (North & West)–Olney, Damascus, Clarksburg & Darnestown PUMA; Maryland | 2.34 |
01002 | Montgomery County (West Central)–Germantown & Montgomery Village PUMA, Maryland | 2.30 |
01003 | Montgomery County (Central)–Rockville, Gaithersburg Cities & North Potomac PUMA; Maryland | 3.17 |
01004 | Montgomery County (South)–Bethesda, Potomac & North Bethesda PUMA; Maryland | 3.12 |
01005 | Montgomery County (East Central)–Wheaton, Aspen Hill & Glenmont PUMA; Maryland | 2.40 |
01006 | Montgomery County (East)–Fairland, Calverton, White Oak & Burtonsville PUMA; Maryland | 2.04 |
01007 | Montgomery County (Southeast)–Takoma Park City & Silver Spring PUMA, Maryland | 1.95 |
01101 | Prince George’s County (Northwest)–College Park City & Langley Park PUMA, Maryland | 2.01 |
01102 | Prince George’s County (North)–Laurel, Greenbelt (North & East) Cities & Beltsville PUMA; Maryland | 2.29 |
01103 | Prince George’s County (Northwest)–New Carrollton & Hyattsville (Southeast) Cities PUMA, Maryland | 1.84 |
01104 | Prince George’s County (Central)–Seat Pleasant City, Capitol Heights Town & Landover PUMA; Maryland | 1.92 |
01105 | Prince George’s County (East)–Bowie City, Kettering, Largo, Mitchellville & Lanham PUMA; Maryland | 3.00 |
01106 | Prince George’s County (South)–Clinton, Fort Washington (South), Rosaryville & Croom PUMA; Maryland | 2.11 |
01107 | Prince George’s County (Southwest)–Oxon Hill, Hillcrest Heights & Temple Hills PUMA; Maryland | 1.91 |
01201 | Anne Arundel County (Northwest)–Severn, Odenton, Crofton, Maryland City & Fort Meade PUMA; Maryland | 2.87 |
01202 | Anne Arundel County (North)–Glen Burnie, Pasadena, Ferndale & Brooklyn Park PUMA; Maryland | 1.94 |
01203 | Anne Arundel County (Central)–Severna Park, Arnold & Lake Shore PUMA; Maryland | 2.30 |
01204 | Anne Arundel County (Southeast)–Annapolis City, Parole, Annapolis Neck & Edgewater PUMA; Maryland | 2.35 |
01300 | Queen Anne’s, Talbot, Caroline, Dorchester & Kent Counties PUMA; Maryland | 2.85 |
01400 | Wicomico, Worcester & Somerset Counties–Salisbury City PUMA; Maryland | 2.99 |
01500 | St. Mary’s & Calvert Counties PUMA, Maryland | 3.37 |
01600 | Charles County–La Plata Town & Waldorf PUMA, Maryland | 2.63 |
PUMA | Children | Adolescents | Adults | Seniors |
---|---|---|---|---|
00100 | 745 | 541 | 1759 | 565 |
00200 | 1197 | 649 | 3248 | 826 |
00301 | 1821 | 665 | 3609 | 780 |
00302 | 1296 | 697 | 3134 | 601 |
00400 | 2229 | 936 | 4689 | 1129 |
00501 | 1450 | 562 | 3179 | 907 |
00502 | 1552 | 818 | 3404 | 788 |
00503 | 1284 | 575 | 2925 | 826 |
00504 | 1366 | 961 | 2837 | 769 |
00505 | 1161 | 612 | 2944 | 583 |
00506 | 821 | 515 | 2186 | 491 |
00507 | 1038 | 709 | 2800 | 624 |
00601 | 1818 | 719 | 3695 | 982 |
00602 | 1195 | 635 | 2783 | 501 |
00700 | 1082 | 544 | 2410 | 554 |
00801 | 741 | 619 | 2213 | 631 |
00802 | 833 | 997 | 2384 | 535 |
00803 | 866 | 755 | 2609 | 473 |
00804 | 543 | 1060 | 2756 | 288 |
00805 | 596 | 638 | 2185 | 375 |
00901 | 2021 | 652 | 3962 | 1074 |
00902 | 2376 | 1012 | 5045 | 850 |
01001 | 2200 | 727 | 3973 | 938 |
01002 | 1492 | 673 | 3659 | 452 |
01003 | 2108 | 895 | 4929 | 1190 |
01004 | 2771 | 776 | 5076 | 1752 |
01005 | 1362 | 555 | 3187 | 896 |
01006 | 1123 | 634 | 3007 | 948 |
01007 | 1100 | 588 | 3078 | 636 |
01101 | 903 | 1289 | 1782 | 299 |
01102 | 1362 | 782 | 3374 | 665 |
01103 | 703 | 529 | 2375 | 505 |
01104 | 793 | 554 | 2668 | 657 |
01105 | 1992 | 995 | 5125 | 1417 |
01106 | 1262 | 633 | 3198 | 895 |
01107 | 753 | 585 | 2604 | 691 |
01201 | 1992 | 916 | 4409 | 684 |
01202 | 910 | 661 | 2624 | 609 |
01203 | 1956 | 717 | 3856 | 933 |
01204 | 1247 | 570 | 3489 | 1129 |
01300 | 1391 | 739 | 3627 | 1256 |
01400 | 1273 | 1031 | 3170 | 1137 |
01500 | 2263 | 1177 | 4932 | 1147 |
01600 | 1919 | 957 | 3947 | 847 |
PUMA | Noncitizens | Citizens | Female | Male | White | Black | Asian | Other |
---|---|---|---|---|---|---|---|---|
00100 | 34 | 3576 | 1851 | 1759 | 3377 | 142 | 29 | 62 |
00200 | 91 | 5829 | 2973 | 2947 | 5280 | 339 | 133 | 168 |
00301 | 121 | 6754 | 3483 | 3392 | 6085 | 257 | 284 | 249 |
00302 | 289 | 5439 | 2914 | 2814 | 4260 | 732 | 360 | 376 |
00400 | 69 | 8914 | 4482 | 4501 | 8372 | 201 | 138 | 272 |
00501 | 113 | 5985 | 3075 | 3023 | 4963 | 728 | 208 | 199 |
00502 | 431 | 6131 | 3569 | 2993 | 1919 | 4140 | 280 | 223 |
00503 | 315 | 5295 | 2951 | 2659 | 3567 | 1484 | 421 | 138 |
00504 | 164 | 5769 | 3176 | 2757 | 4150 | 1247 | 337 | 199 |
00505 | 246 | 5054 | 2790 | 2510 | 3423 | 1225 | 435 | 217 |
00506 | 115 | 3898 | 2027 | 1986 | 2986 | 770 | 69 | 188 |
00507 | 241 | 4930 | 2732 | 2439 | 3156 | 1426 | 424 | 165 |
00601 | 71 | 7143 | 3618 | 3596 | 6604 | 244 | 160 | 206 |
00602 | 84 | 5030 | 2638 | 2476 | 3578 | 1086 | 155 | 295 |
00700 | 22 | 4568 | 2279 | 2311 | 4146 | 208 | 59 | 177 |
00801 | 176 | 4028 | 2371 | 1833 | 827 | 3222 | 72 | 83 |
00802 | 262 | 4487 | 2481 | 2268 | 2568 | 1650 | 320 | 211 |
00803 | 82 | 4621 | 2632 | 2071 | 1029 | 3516 | 38 | 120 |
00804 | 287 | 4360 | 2368 | 2279 | 2763 | 1418 | 203 | 263 |
00805 | 113 | 3681 | 2078 | 1716 | 1497 | 2058 | 93 | 146 |
00901 | 464 | 7245 | 3895 | 3814 | 5176 | 809 | 1300 | 424 |
00902 | 611 | 8672 | 4793 | 4490 | 5224 | 2081 | 1510 | 468 |
01001 | 377 | 7461 | 3914 | 3924 | 5151 | 787 | 1351 | 549 |
01002 | 853 | 5423 | 3166 | 3110 | 2994 | 1668 | 1074 | 540 |
01003 | 1222 | 7900 | 4736 | 4386 | 5224 | 990 | 2163 | 745 |
01004 | 1178 | 9197 | 5299 | 5076 | 7923 | 503 | 1491 | 458 |
01005 | 695 | 5305 | 3075 | 2925 | 3242 | 1127 | 581 | 1050 |
01006 | 598 | 5114 | 3001 | 2711 | 2071 | 2147 | 850 | 644 |
01007 | 581 | 4821 | 2775 | 2627 | 3175 | 1217 | 412 | 598 |
01101 | 752 | 3521 | 2026 | 2247 | 1556 | 1372 | 394 | 951 |
01102 | 551 | 5632 | 3161 | 3022 | 1729 | 3312 | 550 | 592 |
01103 | 637 | 3475 | 2118 | 1994 | 1122 | 2151 | 135 | 704 |
01104 | 206 | 4466 | 2584 | 2088 | 152 | 4259 | 41 | 220 |
01105 | 444 | 9085 | 5077 | 4452 | 1639 | 7062 | 330 | 498 |
01106 | 198 | 5790 | 3212 | 2776 | 656 | 4697 | 226 | 409 |
01107 | 234 | 4399 | 2540 | 2093 | 346 | 3832 | 151 | 304 |
01201 | 291 | 7710 | 4133 | 3868 | 4824 | 2178 | 497 | 502 |
01202 | 138 | 4666 | 2445 | 2359 | 3658 | 722 | 135 | 289 |
01203 | 107 | 7355 | 3712 | 3750 | 6382 | 559 | 198 | 323 |
01204 | 121 | 6314 | 3286 | 3149 | 5529 | 558 | 96 | 252 |
01300 | 129 | 6884 | 3611 | 3402 | 6068 | 665 | 56 | 224 |
01400 | 189 | 6422 | 3496 | 3115 | 5054 | 1253 | 140 | 164 |
01500 | 94 | 9425 | 4848 | 4671 | 7991 | 954 | 211 | 363 |
01600 | 110 | 7560 | 4057 | 3613 | 3587 | 3389 | 224 | 470 |
The average monthly employment for 2018 and the May 2020 employment were derived from the U.S. Bureau of Labor Statistics Local Area Unemployment Statistics. The difference between the two estimates represents the loss of persons employed in 2018 versus May 2020. May 2020 was the latest month for which data was available at the time of this report.
Employment, insurance coverage, age, sex, citizenship status and ethnicity were derived from the U.S. Census Bureau American Community Survey 2018 Public Use Microdata Area files.
The Census Bureau and Bureau of Labor Statistics estimates of 2018 employment agree closely, to within 0.5%. The difference appears due to differences in reporting periods used.
Geographic data was obtained from U.S. Census Bureau TIGER files.
At the request of the client, the American Community Survey data was obtained through the ipumsr
compilation.
ipums
compilationAn allocation of job losses based on the 2018 survey occupation classification in conjunction with the Bureau of Labor Statistics Community Employment Survey data of business establishments was considered and rejected.
The Community Employment Survey tabulates jobs by occupation as reported by employer. The employer has no necessary information whether an employee has another job. The reporting does not depend on whether an employee is a resident of Maryland or another state. Thus, the resident employee based reporting of the American Community Survey could not be reconciled without multiplying assumptions.
Census identification of non-citizen status does not distinguish among permanent residents, unexpired visa holders, persons present pending administrative determination of residence eligibility and persons subject to summary deportation.
The Census file relied upon did not provide detail on Hispanic population. Chinese, Japanese, other Asian and Pacific Islander classified persons were consolidated in this report as Asian.
Github repository access on request to technocrat@ technocratic.io
Kris Eberwein (2019). blscrapeR: An API Wrapper for
the Bureau of Labor Statistics (BLS). R package
version 3.2.0.
https://CRAN.R-project.org/package=blscrapeR
Max Kuhn (2020). caret: Classification and Regression
Training. R package version 6.0-86.
https://CRAN.R-project.org/package=caret
Hadley Wickham, Romain François, Lionel Henry and
Kirill Müller (2020). dplyr: A Grammar of Data
Manipulation. R package version 1.0.0.
https://CRAN.R-project.org/package=dplyr
Hiroaki Yutani (2020). ggsflabel: Labels for 'sf' with
'ggplot2'. R package version 0.0.1.
https://yutannihilation.github.io/ggsflabel/
Hadley Wickham and Evan Miller (2020). haven: Import
and Export 'SPSS', 'Stata' and 'SAS' Files. R package
version 2.3.1.
https://CRAN.R-project.org/package=haven
Kirill Müller (2017). here: A Simpler Way to Find Your
Files. R package version 0.1.
https://CRAN.R-project.org/package=here
Greg Freedman Ellis and Derek Burk (2020). ipumsr:
Read 'IPUMS' Extract Files. R package version 0.4.5.
https://CRAN.R-project.org/package=ipumsr
Sam Firke (2020). janitor: Simple Tools for Examining
and Cleaning Dirty Data. R package version 2.0.1.
https://CRAN.R-project.org/package=janitor
Hao Zhu (2019). kableExtra: Construct Complex Table
with 'kable' and Pipe Syntax. R package version 1.1.0.
https://CRAN.R-project.org/package=kableExtra
Garrett Grolemund, Hadley Wickham (2011). Dates and
Times Made Easy with lubridate. Journal of Statistical
Software, 40(3), 1-25. URL
http://www.jstatsoft.org/v40/i03/.
Hadley Wickham, Jim Hester and Romain Francois (2018).
readr: Read Rectangular Text Data. R package version
1.3.1. https://CRAN.R-project.org/package=readr
R Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL
https://www.R-project.org/
Pebesma, E., 2018. Simple Features for R: Standardized
Support for Spatial Vector Data. The R Journal 10 (1),
439-446, https://doi.org/10.32614/RJ-2018-009
Kirill Müller and Hadley Wickham (2020). tibble:
Simple Data Frames. R package version 3.0.3.
https://CRAN.R-project.org/package=tibble
Kyle Walker (2020). tidycensus: Load US Census
Boundary and Attribute Data as 'tidyverse' and
'sf'-Ready Data Frames. R package version 0.9.9.5.
https://CRAN.R-project.org/package=tidycensus