
How to tweak Rmarkdown output programmatically:
Part 1 of a series . . .
Richard Careaga

2015-11-11

RMarkdown and knitr encourage a kind of arms race towards
improved presentation of R results. In the face of console-style out-
put, such as

##

Disputed Firearm Knife

Death in custody 0.0 0.00 0.00

Gunshot 0.3 47.92 14.24

Struck by vehicle 0.0 0.15 0.00

Taser 0.0 0.00 0.15

Unknown 0.0 0.00 0.00

Sum 0.3 48.07 14.39

##

No

Death in custody 3.86

Gunshot 9.50

Struck by vehicle 3.26

Taser 4.60

Unknown 0.45

Sum 21.66

##

Non-lethal firearm Other

Death in custody 0.00 0.15

Gunshot 3.26 5.19

Struck by vehicle 0.00 0.00

Taser 0.00 0.30

Unknown 0.00 0.00

Sum 3.26 5.64

##

Unknown

Death in custody 0.15

Gunshot 2.97

Struck by vehicle 0.00

Taser 0.00

Unknown 0.00

Sum 3.12

how to tweak rmarkdown output programmatically: part 1 of a series . . . 2

we demand to know: Where’s the glory in that?
No, we aim for publication quality tables, for which we turn to

LATEX, and for that we are blessed with xtable.

Disputed Firearm Knife No

Death in custody 0.00 0.00 0.00 3.86

Gunshot 0.30 47.92 14.24 9.50

Struck by vehicle 0.00 0.15 0.00 3.26

Taser 0.00 0.00 0.15 4.60

Unknown 0.00 0.00 0.00 0.45

Sum 0.30 48.07 14.39 21.66

Table 1: 2

Close, but no cigar.1 1 When, please, may we expect the
embargo on genuine Cuban cigars to be
lifted, please, Mr. President?

In the first place, although we have the zero.print = “.” in addmar-
gins to surpress all the 0.00 entries, we don“t in xtables. While a
Wickham may be able to dash off a package before breakfast to fix
this, mere mortals cannot. It is also an imposition on our fellow mere
mortals to ask them to accompany our attempts at literate program-
ming with new devtool:install instructions for our R code to fix this.2 2 R has many virtues, string manipula-

tion not necessarily included.Additionally, we would like percentage signs”%“, which must be
escaped for LATEX with a backslash,”\%."

Doing this by hand is both tedious and error prone.3 Doing post- 3 Why not just go back to Excel?

processing of an intermediate md file is possible but offends the
workflow god. Enter pandoc. This is a Haskell package that does the
behind-the-scenes heavy lifting for RMarkdown. It has been called
the Swiss Army Knife of format conversion.

Buried in help(rmarkdown) lies the secret sauce to pass to pan-
doc the command line arguments that will sneak an invisible filter
through which will tickle its imput to pummel the raw output of
xtable into presentable LATEX and, thus, ultimately, into polished ta-
bles that don’t require hand tweaking.

In the forepart yaml, add

output:

rmarkdown::tufte_handout:

pandoc_args: [

"--filter", "/Users/rc/bin/style1"

]

where style1 is a program that reads from stdin and writes to std-
out, parsing the output of pandoc and feeding it back into pandoc for
further rendering.

In a Platonic world, however, we would want to take the edit
changes needed to transform the first table below into the second

how to tweak rmarkdown output programmatically: part 1 of a series . . . 3

from the metadata in the document itself.

Disputed Firearm Knife No

Death in custody 0.00 0.00 0.00 3.86

Gunshot 0.30 47.92 14.24 9.50

Struck by vehicle 0.00 0.15 0.00 3.26

Taser 0.00 0.00 0.15 4.60

Unknown 0.00 0.00 0.00 0.45

Sum 0.30 48.07 14.39 21.66

Table 2: Causes of 674 civilian deaths by
type of weapon carried by civilian, part
1

Disputed Firearm Knife None
(%) (%) (%) (%)

Death in Custody . . . 3.86

Gunshot 0.30 47.92 14.24 9.50

Struck by Vehicle . 0.15 . 3.26

Taser . . 0.15 4.60

Unknown . . . 0.45

Sum 0.30 48.07 14.39 21.66

Table 3: Causes of 674 civilian deaths by
type of weapon carried by civilian, part
1

This proves not to be as straightforward as might be desired.
While pandoc’s API exposes a serialization of the abstract syntax
tree (AST) that it uses to internally represent the source document
for transformation into the target document and allows free access
to anything in the yaml forematter for use in a document template,
the functionality to directly access the yaml fields for anything else
is supressed. Unless you want to fork the pandoc project and refactor the
code (in Haskell) to permit this, keeping your programmatic edits in
the forematter is not in the cards, at least to the dealer at this table.

Besides, it finally penetrated my thick skull,

Filtering through a programmatic process is a noble ideal when all of
the kinks have been worked out, especially when you are cranking the
handle on a production process. But that’s not the world we usually
inhabit. Grab, grab, scrub, scrub, tinker, tinker, output, output, tinker,
tinker. Repeat.

Being brutally honest with myself, I don’t embark upon any sort
of the types of data analyses that I routinely do with the resolve of
testing all the edge cases for my output format. Type, type, render,
render, tweak, tweak is what I do. Only if I knew that I had a huge
number of chunks to output and process consistently would I do
that.

But what about the intermediate case between the one off and the
factory method where you have sufficient iterations to make one-off

how to tweak rmarkdown output programmatically: part 1 of a series . . . 4

hand editing problematic but too few to make a full fledged bot a
good use of your time?

For this, we need to bring the prompt back into our workflow and
use the hierloom legacy of standard command line or bespoke tools
to bring the power of stdin | stdout to bear.

For R, and, therefore, for Rmd, we have

> system()

which allows us to send R objects off to be processed at less
heartache and brought back into the workflow.

And that is why, the second thought that permeated my skull was

The closer to the source and to the eyes on the output, the better off
you are.

A word, however, on an important assumption: The code has been
already composed and tested and the analysis completed before
the author sets out to prepare an Rmd file for draft and final ren-
dering. Premature pretty printing is the sin that tempts the otherwise
enlightened to ape the office application substitution of decoration
for thought.4 4 In the days of greenbar, no one wor-

ried about how snazzy a thick stack
of folded printout looked. There were
sensible defaults, hard to override,
and you tended to worry more about
substance. When I left the Fortune 50

world, it seemed that most reports were
far more concerned with appearance
than substance.

So, here’s how I used system() to tweak my xtable rendering.
First, I adapted Haskell code that I had been working on as a

pandoc filter. It ain’t what you could call elegant, and there is no
special magic to the language. You can substitute sed, awk, Perl,
Python, Ruby, C, C++, Go or any other language or combination of
languages and command line utilities you like.5 5 Windows users: I am unable to answer

any questions related to how this could
be done without a *nix. It’s been a
decade since I’ve owned a box under
Windows.

The only thing to be said in favor of the style of this bit of code by
a rank beginner is that it works notwithstanding the deficit of elegance.

{- --style1.hs 2015-11-09 23:12 v 1.0 by Richard Careaga

--adjust column alignment for row names, title case required words in row names

--replace columns with revised names and additional header row giving units

--NB: plauge of blackslashes resolved by inspection

--zero.print = TRUE to replace "0.00" with 0.0

--usage: cat FILENAME | ./style1

--R: see discussion in accompanying text

--TODO: replace lambdas, map it to a structure of k, v pairs, get k, v pairs from a

-- metadata block in the source file and otherwise prevent milk from coming out the

-- noses of real Haskell programmers

-}

import Text.Regex

how to tweak rmarkdown output programmatically: part 1 of a series . . . 5

custody :: String

custody = "custody"

uCustody :: String

uCustody = "Custody"

vehicle :: String

vehicle = "vehicle"

uVehicle :: String

uVehicle = "Vehicle"

numZeros :: String

numZeros = " 0.00"

dotZeros :: String

dotZeros = "."

rightJustify :: String

rightJustify = "{r"

leftJustify :: String

leftJustify = "{l"

noLabel :: String

noLabel = ".label.2."

emptyString :: String

emptyString = ""

oldHeader :: String

oldHeader = " & Disputed & Firearm & Knife & No \\\\"

newHeader :: String

newHeader = " & Disputed & Firearm & Knife & None \\\\\\\\\n&(\\\\%)&(\\\\%)&(\\\\%)&(\\\\%)\\\\"

main :: IO()

main = interact ((\ f -> subRegex (mkRegex rightJustify) f leftJustify) .

(\ f -> subRegex (mkRegex oldHeader) f newHeader) .

(\ f -> subRegex (mkRegex custody) f uCustody) .

(\ f -> subRegex (mkRegex vehicle) f uVehicle) .

(\ f -> subRegex (mkRegex numZeros) f dotZeros) .

(\ f -> subRegex (mkRegex noLabel) f emptyString))

how to tweak rmarkdown output programmatically: part 1 of a series . . . 6

{-- stdin

% latex table generated in R 3.2.1 by xtable 1.7-4 package

% Mon Nov 9 21:01:01 2015

\begin{table}[ht]

\centering

\begin{tabular}{rrrrr}

\hline

& Disputed & Firearm & Knife & No \\

\hline

Death in custody & 0.00 & 0.00 & 0.00 & 3.86 \\

Gunshot & 0.30 & 47.92 & 14.24 & 9.50 \\

Struck by vehicle & 0.00 & 0.15 & 0.00 & 3.26 \\

Taser & 0.00 & 0.00 & 0.15 & 4.60 \\

Unknown & 0.00 & 0.00 & 0.00 & 0.45 \\

Sum & 0.30 & 48.07 & 14.39 & 21.66 \\

\hline

\end{tabular}

\caption{Causes of 674 civilian deaths by type of weapon carried by civilian, part 1}

\label{2}

\end{table}

-- stdout

% latex table generated in R 3.2.1 by xtable 1.7-4 package

% Mon Nov 9 21:01:01 2015

\begin{table}[ht]

\centering

\begin{tabular}{lrrrr}

\hline

& Disputed & Firearm & Knife & None \\

& (\%) & (\%) & (\%) & (\%) \\

\hline

Death in Custody &. &. &. & 3.86 \\

Gunshot & 0.30 & 47.92 & 14.24 & 9.50 \\

Struck by Vehicle &. & 0.15 &. & 3.26 \\

Taser &. &. & 0.15 & 4.60 \\

Unknown &. &. &. & 0.45 \\

Sum & 0.30 & 48.07 & 14.39 & 21.66 \\

\hline

\end{tabular}

\caption{Causes of 674 civilian deaths by type of weapon carried by civilian, part 1}

\end{table}

--}

how to tweak rmarkdown output programmatically: part 1 of a series . . . 7

It should be mainly obvious what this code does. The plague of
backslashes is due to the use of that character as an escape character
in both \LaTex\ and R.

The way that I am now using this is to modify a copy of the out-
put of table through a system() command, thusly

library(xtable)

options(xtable.comment = FALSE)

options(xtable.booktabs = TRUE)

load("cod.Rda") # previously saved data frame

sumcod <- cod[6,9] # n observations

round(cod[,1:4]/sumcod*100,2) # first part of the wide table

{r, results="hide", echo=FALSE} # in Rmd chunk to surpress but capture table

table <- print(xtable(cod[,1:4]/sumcod*100,2, caption = paste("Causes of", sumcod,

+ "civilian deaths by type of weapon carried by civilian, part 1")))

{r, results="asis", echo=FALSE} # in Rmd chunk to filter output of xtable

table <- cat(system("~/bin/style1", input = table, intern = TRUE))

